arXiv Analytics

Sign in

arXiv:2110.09003 [math.CO]AbstractReferencesReviewsResources

Application of some techniques in Sperner Theory: Optimal orientations of vertex-multiplications of trees with diameter 4

W. H. W. Wong, E. G. Tay

Published 2021-10-18, updated 2022-10-11Version 2

Koh and Tay proved a fundamental classification of $G$ vertex-multiplications into three classes $\mathscr{C}_0, \mathscr{C}_1$ and $\mathscr{C}_2$. They also showed that any vertex-multiplication of a tree with diameter at least 3 does not belong to the class $\mathscr{C}_2$. Of interest, $G$ vertex-multiplications are extensions of complete $n$-partite graphs and Gutin characterised complete bipartite graphs with an ingenious use of Sperner's Theorem. In this paper, we investigate vertex-multiplications of trees with diameter $4$ in $\mathscr{C}_0$ (or $\mathscr{C}_1$) and exhibit its intricate connections with problems in Sperner Theory, thereby extending Gutin's approach. Let $s$ denote the vertex-multiplication of the central vertex. We almost completely characterise the case of even $s$ and give a complete characterisation for the case of odd $s\ge 3$.

Related articles: Most relevant | Search more
arXiv:1407.8537 [math.CO] (Published 2014-07-31)
A new application of the $\otimes_h$-product to $α$-labelings
arXiv:1509.04862 [math.CO] (Published 2015-09-16)
An application of the Local C(G,T) Theorem to a conjecture of Weiss
arXiv:1210.6455 [math.CO] (Published 2012-10-24)
An application of a bijection of Mansour, Deng, and Du