arXiv Analytics

Sign in

arXiv:2109.13542 [cs.LG]AbstractReferencesReviewsResources

Convergence of Deep Convolutional Neural Networks

Yuesheng Xu, Haizhang Zhang

Published 2021-09-28, updated 2022-01-23Version 2

Convergence of deep neural networks as the depth of the networks tends to infinity is fundamental in building the mathematical foundation for deep learning. In a previous study, we investigated this question for deep ReLU networks with a fixed width. This does not cover the important convolutional neural networks where the widths are increasing from layer to layer. For this reason, we first study convergence of general ReLU networks with increasing widths and then apply the results obtained to deep convolutional neural networks. It turns out the convergence reduces to convergence of infinite products of matrices with increasing sizes, which has not been considered in the literature. We establish sufficient conditions for convergence of such infinite products of matrices. Based on the conditions, we present sufficient conditions for piecewise convergence of general deep ReLU networks with increasing widths, and as well as pointwise convergence of deep ReLU convolutional neural networks.

Comments: arXiv admin note: text overlap with arXiv:2107.12530
Categories: cs.LG
Related articles: Most relevant | Search more
arXiv:2109.03194 [cs.LG] (Published 2021-09-07)
On the Convergence of Decentralized Adaptive Gradient Methods
arXiv:1810.00122 [cs.LG] (Published 2018-09-29)
On the Convergence and Robustness of Batch Normalization
arXiv:1811.09358 [cs.LG] (Published 2018-11-23)
A Sufficient Condition for Convergences of Adam and RMSProp