arXiv:2109.11396 [math.CO]AbstractReferencesReviewsResources
On the maximum of the weighted binomial sum $2^{-r}\sum_{i=0}^r\binom{m}{i}$
Published 2021-09-21Version 1
The weighted binomial sum $f_m(r)=2^{-r}\sum_{i=0}^r\binom{m}{i}$ arises in coding theory and information theory. We prove that,for $m\not \in\{0,3,6,9,12\}$, the maximum value of $f_m(r)$ with $0\leqslant r\leqslant m$ occurs when $r=\lfloor m/3\rfloor+1$. We also show this maximum value is asymptotic to $\frac{3}{\sqrt{{\pi}m}}\left(\frac{3}{2}\right)^m$ as $m\to\infty$.
Comments: 9 pages, 2 tables, hyperlinks and backrefs
Categories: math.CO
Related articles: Most relevant | Search more
arXiv:2305.16631 [math.CO] (Published 2023-05-26)
On the maximum of the weighted binomial sum $(1+a)^{-r}\sum_{i=0}^{r}\binom{m}{i}a^{i}$
Sum of squares of degrees in a graph
arXiv:math/9910175 [math.CO] (Published 1999-10-31)
Polynomial method in coding and information theory