arXiv:2109.11337 [math.CA]AbstractReferencesReviewsResources
A modification of the Prudnikov and Laguerre polynomials
Published 2021-09-23Version 1
A two-parameter sequence of orthogonal polynomials $\{P_n( x; \lambda, t)\}_{n\ge 0}$ with respect to the weight function $x^\alpha e^{- \lambda x} \rho_\nu(x t),\ \alpha > -1,\ \lambda, t \ge 0, \ \rho_{\nu}(x)= 2 x^{\nu/2} K_\nu(2\sqrt x),\ x >0, \nu \ge 0$, where $K_\nu(z)$ is the modified Bessel function, is investigated. The case $\lambda=0$ corresponds to the Prudnikov polynomials and $t=0$ is related to the Laguerre polynomials. A special one-parameter case $\{P_n( x; 1-t, t)\}_{n\ge 0},\ t \in [0,1]$ is analyzed as well.
Categories: math.CA
Related articles: Most relevant | Search more
Strong and ratio asymptotics for Laguerre polynomials revisited
arXiv:2108.07517 [math.CA] (Published 2021-08-17)
Zeros of quasi-orthogonal $q$-Laguerre polynomials
On the spacings between the successive zeros of the Laguerre polynomials