arXiv:2109.11331 [math.AP]AbstractReferencesReviewsResources
Liouville results for fully nonlinear equations modeled on Hörmander vector fields: II. Carnot groups and Grushin geometries
Martino Bardi, Alessandro Goffi
Published 2021-09-23Version 1
The paper treats second order fully nonlinear degenerate elliptic equations having a family of subunit vector fields satisfying a full-rank bracket condition. It studies Liouville properties for viscosity sub- and supersolutions in the whole space, namely, that under a suitable bound at infinity from above and, respectively, from below, they must be constant. In a previous paper we proved an abstract result and discussed operators on the Heisenberg group. Here we consider various families of vector fields: the generators of a Carnot group, with more precise results for those of step 2, in particular H-type groups and free Carnot groups, the Grushin and the Heisenberg-Greiner vector fields. All these cases are relevant in sub-Riemannian geometry and have in common the existence of a homogeneous norm that we use for building Lyapunov-like functions for each operator. We give explicit sufficient conditions on the size and sign of the first and zero-th order terms in the equations and discuss their optimality.