arXiv:2109.11003 [math.NT]AbstractReferencesReviewsResources
Rational approximations of irrational numbers
Published 2021-09-22Version 1
Given quantities $\Delta_1,\Delta_2,\dots\geqslant 0$, a fundamental problem in Diophantine approximation is to understand which irrational numbers $x$ have infinitely many reduced rational approximations $a/q$ such that $|x-a/q|<\Delta_q$. Depending on the choice of $\Delta_q$ and of $x$, this question may be very hard. However, Duffin and Schaeffer conjectured in 1941 that if we assume a "metric" point of view, the question is governed by a simple zero--one law: writing $\varphi$ for Euler's totient function, we either have $\sum_{q=1}^\infty \varphi(q)\Delta_q=\infty$ and then almost all irrational numbers (in the Lebesgue sense) are approximable, or $\sum_{q=1}^\infty\varphi(q)\Delta_q<\infty$ and almost no irrationals are approximable. We present the history of the Duffin--Schaeffer conjecture and the main ideas behind the recent work of Koukoulopoulos--Maynard that settled it.