arXiv:2109.10785 [quant-ph]AbstractReferencesReviewsResources
Variational Quantum Algorithm for Schmidt Decomposition
Ranyiliu Chen, Benchi Zhao, Xin Wang
Published 2021-09-22Version 1
Entanglement plays a crucial role in quantum physics and is the key resource in quantum information processing. In entanglement theory, Schmidt decomposition is a powerful tool to analyze the fundamental properties and structure of quantum entanglement. This work introduces a hybrid quantum-classical algorithm for Schmidt decomposition of bipartite pure states on near-term quantum devices. First, we show that the Schmidt decomposition task could be accomplished by maximizing a cost function utilizing bi-local quantum neural networks. Based on this, we propose a variational quantum algorithm for Schmidt decomposition (named VQASD) of which the cost function evaluation notably requires only one estimate of expectation with no extra copies of the input state. In this sense, VQASD outperforms existent approaches in resource cost and hardware efficiency. Second, by further exploring VQASD, we introduce a variational quantum algorithm to estimate the logarithm negativity, which can be applied to efficiently quantify entanglement of bipartite pure states. Third, we experimentally implement our algorithm on Quantum Leaf using the IoP CAS superconducting quantum processor. Both experimental implementations and numerical simulations exhibit the validity and practicality of our methods for analyzing and quantifying entanglement on near-term quantum devices.