arXiv Analytics

Sign in

arXiv:2109.09639 [math.NT]AbstractReferencesReviewsResources

Positive integer solutions to $(x+y)^2+(y+z)^2+(z+x)^2=12xyz$

Yasuaki Gyoda

Published 2021-09-20Version 1

In this paper, we give a specific way of describing positive integer solutions of a Diophantine equation $(x+y)^2+(y+z)^2+(z+x)^2=12xyz$ and introduce a generalized cluster pattern behind it.

Comments: 7 pages
Categories: math.NT, math.CO
Subjects: 11D25, 13F60
Related articles: Most relevant | Search more
arXiv:1612.03768 [math.NT] (Published 2016-12-12)
On a diophantine equation of Muneer
arXiv:1510.03422 [math.NT] (Published 2015-10-12)
Notes on the Diophantine Equation A^4+aB^4=C^4+aD^4
arXiv:0903.1742 [math.NT] (Published 2009-03-10)
The Diophantine equation $aX^{4} - bY^{2} = 1$