arXiv Analytics

Sign in

arXiv:2109.06280 [astro-ph.SR]AbstractReferencesReviewsResources

Solar differential rotation reproduced with high-resolution simulation

H. Hotta, K. Kusano

Published 2021-09-13Version 1

The Sun rotates differentially with a fast equator and slow pole. Convection in the solar interior is thought to maintain the differential rotation. However, although many numerical simulations have been conducted to reproduce the solar differential rotation, previous high-resolution calculations with solar parameters fall into the anti-solar (fast pole) differential rotation regime. Consequently, we still do not know the true reason why the Sun has a fast-rotating equator. While the construction of the fast equator requires a strong rotational influence on the convection, the previous calculations have not been able to achieve the situation without any manipulations. The problem is called convective conundrum. The convection and the differential rotation in numerical simulations were different from the observations. Here, we show that a high-resolution calculation succeeds in reproducing the solar-like differential rotation. Our calculations indicate that the strong magnetic field generated by a small-scale dynamo has a significant impact on thermal convection. The successful reproduction of the differential rotation, convection, and magnetic field achieved in our calculation is an essential step to understanding the cause of the most basic nature of solar activity, specifically, the 11-year cycle of sunspot activity.

Comments: 11 pages, 4 figures, published in Nature Astronomy (2021)
Categories: astro-ph.SR
Related articles: Most relevant | Search more
arXiv:1301.1330 [astro-ph.SR] (Published 2013-01-07, updated 2013-01-08)
Solar differential rotation: hints to reproduce a near-surface shear layer in global simulations
arXiv:2505.10756 [astro-ph.SR] (Published 2025-05-15)
Investigating Variations in Solar Differential Rotation by Helioseismology
arXiv:2204.07396 [astro-ph.SR] (Published 2022-04-15)
Variation in solar differential rotation and activity in the period 1964-2016 determined by the Kanzelhöhe data set