arXiv Analytics

Sign in

arXiv:2109.06170 [math.AP]AbstractReferencesReviewsResources

Asymptotic analysis of the stress concentration between two adjacent stiff inclusions in all dimensions

Zhiwen Zhao, Xia Hao

Published 2021-09-10Version 1

In the region between two closely located stiff inclusions, the stress, which is the gradient of a solution to the Lam\'{e} system with partially infinite coefficients, may become arbitrarily large as the distance between interfacial boundaries of inclusions tends to zero. The primary aim of this paper is to give a sharp description in terms of the asymptotic behavior of the stress concentration, as the distance between interfacial boundaries of inclusions goes to zero. For that purpose we capture all the blow-up factor matrices, whose elements comprise of some certain integrals of the solutions to the case when two inclusions are touching. Then we are able to establish the asymptotic formulas of the stress concentration in the presence of two close-to-touching $m$-convex inclusions in all dimensions. Furthermore, an example of curvilinear squares with rounded-off angles is also presented for future application in numerical computations and simulations.

Comments: arXiv admin note: text overlap with arXiv:2109.05063
Categories: math.AP
Related articles: Most relevant | Search more
arXiv:1512.03735 [math.AP] (Published 2015-12-09)
Asymptotic analysis of a semi-linear elliptic system in perforated domains: well-posedness and correctors for the homogenization limit
arXiv:math/0303079 [math.AP] (Published 2003-03-06)
On the asymptotic analysis of the Dirac-Maxwell system in the nonrelativistic limit
arXiv:2002.02766 [math.AP] (Published 2020-02-05)
Asymptotic Analysis of Transport Equation in Bounded Domains