arXiv:2109.00609 [math.CO]AbstractReferencesReviewsResources
On a Partition Identity of Lehmer
Cristina Ballantine, Hannah E. Burson, Amanda Folsom, Chi-Yun Hsu, Isabella Negrini, Boya Wen
Published 2021-09-01Version 1
Euler's identity equates the number of partitions of any non-negative integer n into odd parts and the number of partitions of n into distinct parts. Beck conjectured and Andrews proved the following companion to Euler's identity: the excess of the number of parts in all partitions of n into odd parts over the number of parts in all partitions of n into distinct parts equals the number of partitions of n with exactly one even part (possibly repeated). Beck's original conjecture was followed by generalizations and so-called "Beck-type" companions to other identities. In this paper, we establish a collection of Beck-type companion identities to the following result mentioned by Lehmer at the 1974 International Congress of Mathematicians: the excess of the number of partitions of n with an even number of even parts over the number of partitions of n with an odd number of even parts equals the number of partitions of n into distinct, odd parts. We also establish various generalizations of Lehmer's identity, and prove related Beck-type companion identities. We use both analytic and combinatorial methods in our proofs.