arXiv:2108.13128 [math.AP]AbstractReferencesReviewsResources
The limit as $p\rightarrow\infty$ for the $p-$Laplacian equation with dynamical boundary conditions
Published 2021-08-30Version 1
In this paper we study the limit as $p\to \infty$ in the evolution problem driven by the $p-$Laplacian with dynamical boundary conditions. We prove that the natural energy functional associated with this problem converges to a limit in the sense of Mosco convergence and as a consequence we obtain convergence of the solutions to the evolution problems. For the limit problem we show an interpretation in terms of optimal mass transportation and provide examples of explicit solutions for some particular data.
Categories: math.AP
Related articles: Most relevant | Search more
Parabolic equations with dynamical boundary conditions and source terms on interfaces
arXiv:1803.02014 [math.AP] (Published 2018-03-06)
Properties of solutions to some weighted $p$-Laplacian equation
Nonlinear elliptic problems with dynamical boundary conditions of reactive and reactive-diffusive type