arXiv:2108.04834 [cond-mat.dis-nn]AbstractReferencesReviewsResources
Many-Body Localization with Quasiperiodic Driving
David M. Long, Philip J. D. Crowley, Anushya Chandran
Published 2021-08-10Version 1
Sufficient disorder is believed to localize static and periodically-driven interacting chains. With quasiperiodic driving by $D$ incommensurate tones, the fate of this many-body localization (MBL) is unknown. We argue that randomly disordered MBL exists for $D=2$, but not for $D \geq 3$. Specifically, a putative two-tone driven MBL chain is neither destabilized by thermal avalanches seeded by rare thermal regions, nor by the proliferation of long-range many-body resonances. For $D \geq 3$, however, sufficiently large thermal regions have continuous local spectra and slowly thermalize the entire chain. En route, we generalize the eigenstate thermalization hypothesis to the quasiperiodically-driven setting, and verify its predictions numerically. Two-tone driving enables new topological orders with edge signatures; our results suggest that localization protects these orders indefinitely.