arXiv Analytics

Sign in

arXiv:2108.01633 [math.CO]AbstractReferencesReviewsResources

Reducing Linear Hadwiger's Conjecture to Coloring Small Graphs

Michelle Delcourt, Luke Postle

Published 2021-08-03Version 1

In 1943, Hadwiger conjectured that every graph with no $K_t$ minor is $(t-1)$-colorable for every $t\ge 1$. In the 1980s, Kostochka and Thomason independently proved that every graph with no $K_t$ minor has average degree $O(t\sqrt{\log t})$ and hence is $O(t\sqrt{\log t})$-colorable. Recently, Norin, Song and the second author showed that every graph with no $K_t$ minor is $O(t(\log t)^{\beta})$-colorable for every $\beta > 1/4$, making the first improvement on the order of magnitude of the $O(t\sqrt{\log t})$ bound. More recently, the second author showed they are $O(t (\log \log t)^{6})$-colorable. Our main technical result is that the chromatic number of a $K_t$-minor-free graph is bounded by $O(t(1+f(G,t))$ where $f(G,t)$ is the maximum of $\frac{\chi(H)}{a}$ over all $a\ge \frac{t}{\sqrt{\log t}}$ and $K_a$-minor-free subgraphs $H$ of $G$ that are small (i.e. $O(a\log^4 a)$ vertices). This has a number of interesting corollaries. First, it shows that proving Linear Hadwiger's Conjecture (that $K_t$-minor-free graphs are $O(t)$-colorable) reduces to proving it for small graphs. Second, using the current best-known bounds on coloring small $K_t$-minor-free graphs, we show that $K_t$-minor-free graphs are $O(t\log\log t)$-colorable. Third, we prove that $K_t$-minor-free graphs with clique number at most $\sqrt{\log t}/ (\log \log t)^2$ are $O(t)$-colorable. This implies our final corollary that Linear Hadwiger's Conjecture holds for $K_r$-free graphs for any fixed $r$ and sufficiently large $t$; more specifically, there exists $C\ge 1$ such that for every $r\ge 1$, there exists $t_r$ such that for all $t\ge t_r$, every $K_r$-free $K_t$-minor-free graph is $Ct$-colorable. One key to proving the main theorem is a new standalone result that every $K_t$-minor-free graph of average degree $d=\Omega(t)$ has a subgraph on $O(d \log^3 t)$ vertices with average degree $\Omega(d)$.

Comments: 23 pages. arXiv admin note: text overlap with arXiv:2006.11798, arXiv:2010.05999
Categories: math.CO, cs.DM
Subjects: 05C15, 05C83
Related articles: Most relevant | Search more
arXiv:1911.01491 [math.CO] (Published 2019-11-04)
Halfway to Hadwiger's Conjecture
arXiv:2202.08530 [math.CO] (Published 2022-02-17)
Complete minors and average degree -- a short proof
arXiv:1005.5194 [math.CO] (Published 2010-05-27, updated 2010-10-01)
Thomassen's Choosability Argument Revisited