arXiv:2107.11322 [math.PR]AbstractReferencesReviewsResources
Sojourn Ruin of a Two-Dimensional Fractional Brownian Motion Risk Process
Published 2021-07-23Version 1
This paper derives the asymptotic behavior of $$\mathbb{P} \{ \int\limits_0^\infty \mathbb{I}\Big(B_H(s)-c_1s>q_1u, B_H(s)-c_2s>q_2u\Big)ds>T_u\},\quad u \to \infty,$$ where $B_H$ is a fractional Brownian motion, $c_1,c_2,q_1,q_2>0,\ H \in (0,1), \ T_u \ge 0$ is a measurable function and $\mathbb{I}(\cdot)$ is the indicator function.
Categories: math.PR
Related articles: Most relevant | Search more
Asymptotic Behavior of Random Heaps
Asymptotic behavior of the rate of adaptation
arXiv:1303.4176 [math.PR] (Published 2013-03-18)
On the asymptotic behavior of the hyperbolic Brownian motion