arXiv:2107.09059 [math.DS]AbstractReferencesReviewsResources
Ergodic dynamical systems over the Cartesian power of the ring of p-adic integers
Published 2021-07-19Version 1
For any 1-lipschitz ergodic map $F:\; \mathbb{Z}^{k}_{p} \mapsto \mathbb{Z}^{k}_{p},\;k>1\in\mathbb{N},$ there are 1-lipschitz ergodic map $G:\; \mathbb{Z}_{p} \mapsto \mathbb{Z}_{p}$ and two bijection $H_k$, $T_{k,\;P}$ that $$G = H_{k} \circ T_{k,\;P}\circ F\circ H^{-1}_{k} \text{ and } F = H^{-1}_{k} \circ T_{k,\;P^{-1}}\circ G\circ H_{k}.$$
Comments: T-Functions of several variables: New Criteria for Transitivity
Journal: P-Adic Num Ultrametr Anal Appl 6, 333-336 (2014)
Tags: journal article
Related articles: Most relevant | Search more
arXiv:1507.02338 [math.DS] (Published 2015-07-08)
Data-driven spectral decomposition and forecasting of ergodic dynamical systems
arXiv:0910.5492 [math.DS] (Published 2009-10-28)
Joining primeness and disjointness from infinitely divisible systems
Substitution shifts generated by $p$-adic integer sequences