arXiv Analytics

Sign in

arXiv:2107.08614 [math.CO]AbstractReferencesReviewsResources

Perfectness of Kirillov-Reshetikhin Crystals $B^{r,s}$ for types $E_{6}^{(1)}$ and $E_{7}^{(1)}$ with a minuscule node $r$

Toya Hiroshima

Published 2021-07-19Version 1

We prove the perfectness of Kirillov-Reshetikhin crystals $B^{r,s}$ for types $E_{6}^{(1)}$ and $E_{7}^{(1)}$ with $r$ being the minuscule node and $s\geq 1$ using the polytope model of KR crystals introduced by Jang.

Comments: 16 pages
Categories: math.CO
Subjects: 17B37, 05E10, 17B25
Related articles: Most relevant | Search more
arXiv:1703.08945 [math.CO] (Published 2017-03-27)
Uniform description of the rigged configuration bijection
arXiv:2412.20757 [math.CO] (Published 2024-12-30)
Lusztig $q$-weight multiplicities and Kirillov-Reshetikhin crystals
arXiv:1409.2920 [math.CO] (Published 2014-09-09)
Crystal structure on rigged configurations and the filling map