arXiv:2106.14953 [math.NT]AbstractReferencesReviewsResources
Powerfree sums of proper divisors
Paul Pollack, Akash Singha Roy
Published 2021-06-28Version 1
Let $s(n):= \sum_{d\mid n,~d<n} d$ denote the sum of the proper divisors of $n$. It is natural to conjecture that for each integer $k\ge 2$, the equivalence \[ \text{$n$ is $k$th powerfree} \Longleftrightarrow \text{$s(n)$ is $k$th powerfree} \] holds almost always (meaning, on a set of asymptotic density $1$). We prove this for $k\ge 4$.
Comments: 7 pages
Categories: math.NT
Related articles: Most relevant | Search more
arXiv:math/0610582 [math.NT] (Published 2006-10-19)
On the asymptotic densities of certain subsets of $\bf N^k$
arXiv:2106.10756 [math.NT] (Published 2021-06-20)
Sums of proper divisors follow the Erdős--Kac law
arXiv:2105.12850 [math.NT] (Published 2021-05-26)
Distribution mod $p$ of Euler's totient and the sum of proper divisors