arXiv:2106.14740 [math.DG]AbstractReferencesReviewsResources
Monge-Ampère equations on compact Hessian manifolds
Published 2021-06-28Version 1
We consider degenerate Monge-Amp\`ere equations on compact Hessian manifolds. We establish compactness properties of the set of normalized quasi-convex functions and show local and global comparison principles for twisted Monge-Amp\`ere operators. We then use the Perron method to solve Monge-Amp\`ere equations whose RHS involves an arbitrary probability measure, generalizing works of Cheng-Yau, Delano\"e, Caffarelli-Viaclovsky and Hultgren-\"Onnheim. The intrinsic approach we develop should be useful in deriving similar results on mildly singular Hessian varieties, in line with the Strominger-Yau-Zaslow conjecture.
Related articles: Most relevant | Search more
arXiv:1607.02923 [math.DG] (Published 2016-07-11)
An optimal transport approach to Monge-Ampère equations on compact Hessian manifolds
Complex solutions of Monge-Ampère equations
Hermitian metrics, (n-1, n-1) forms and Monge-Ampère equations