arXiv Analytics

Sign in

arXiv:2106.09421 [math.NA]AbstractReferencesReviewsResources

State Estimation with Model Reduction and Shape Variability. Application to biomedical problems

Felipe Galarce, Damiano Lombardi, Olga Mula

Published 2021-06-17Version 1

We develop a mathematical and numerical framework to solve state estimation problems for applications that present variations in the shape of the spatial domain. This situation arises typically in a biomedical context where inverse problems are posed on certain organs or portions of the body which inevitably involve morphological variations. If one wants to provide fast reconstruction methods, the algorithms must take into account the geometric variability. We develop and analyze a method which allows to take this variability into account without needing any a priori knowledge on a parametrization of the geometrical variations. For this, we rely on morphometric techniques involving Multidimensional Scaling, and couple them with reconstruction algorithms that make use of reduced model spaces pre-computed on a database of geometries. We prove the potential of the method on a synthetic test problem inspired from the reconstruction of blood flows and quantities of medical interest with Doppler ultrasound imaging.

Related articles: Most relevant | Search more
arXiv:1509.05084 [math.NA] (Published 2015-09-16)
An Accelerated Dual Gradient Method and Applications in Viscoplasticity
arXiv:1512.06626 [math.NA] (Published 2015-12-21)
Banded operational matrices for Bernstein polynomials and application to the fractional advection-dispersion equation
arXiv:1405.0223 [math.NA] (Published 2014-05-01, updated 2016-12-30)
Fast symmetric factorization of hierarchical matrices with applications