arXiv Analytics

Sign in

arXiv:2106.09253 [math.AP]AbstractReferencesReviewsResources

Stability of Caffarelli-Kohn-Nirenberg inequality

Juncheng Wei, Yuanze Wu

Published 2021-06-17Version 1

In this paper, we consider the Caffarelli-Kohn-Nirenberg (CKN) inequality: \begin{eqnarray*} \bigg(\int_{{\mathbb R}^N}|x|^{-b(p+1)}|u|^{p+1}dx\bigg)^{\frac{2}{p+1}}\leq C_{a,b,N}\int_{{\mathbb R}^N}|x|^{-2a}|\nabla u|^2dx \end{eqnarray*} where $N\geq3$, $a<\frac{N-2}{2}$, $a\leq b\leq a+1$ and $p=\frac{N+2(1+a-b)}{N-2(1+a-b)}$. It is well-known that up to dilations $\tau^{\frac{N-2}{2}-a}u(\tau x)$ and scalar multiplications $Cu(x)$, the CKN inequality has a unique extremal function $W(x)$ which is positive and radially symmetric in the parameter region $b_{FS}(a)\leq b<a+1$ with $a<0$ and $a\leq b<a+1$ with $a\geq0$ and $a+b>0$, where $b_{FS}(a)$ is the Felli-Schneider curve. We prove that in the above parameter region the following stabilities hold: \begin{enumerate} \item[$(1)$] \quad stability of CKN inequality in the functional inequality setting $$dist_{D^{1,2}_{a}}^2(u, \mathcal{Z})\lesssim\|u\|^2_{D^{1,2}_a({\mathbb R}^N)}-C_{a,b,N}^{-1}\|u\|^2_{L^{p+1}(|x|^{-b(p+1)},{\mathbb R}^N)}$$ where $\mathcal{Z}= \{ c W_\tau\mid c\in\bbr\backslash\{0\}, \tau>0\}$; \item[$(2)$]\quad stability of CKN inequality in the critical point setting (in the class of nonnegative functions) \begin{eqnarray*} dist_{D_a^{1,2}}(u, \mathcal{Z}_0^\nu)\lesssim\left\{\aligned &\Gamma(u),\quad p>2\text{ or }\nu=1,\\ &\Gamma(u)|\log\Gamma(u)|^{\frac12},\quad p=2\text{ and }\nu\geq2,\\ &\Gamma(u)^{\frac{p}{2}},\quad 1<p<2\text{ and }\nu\geq2, \endaligned\right. \end{eqnarray*} where $\Gamma (u)=\|div(|x|^{-a}\nabla u)+|x|^{-b(p+1)}|u|^{p-1}u\|_{(D^{1,2}_a)^{'}}$ and $$\mathcal{Z}_0^\nu=\{(W_{\tau_1},W_{\tau_2},\cdots,W_{\tau_\nu})\mid \tau_i>0\}.$$

Related articles: Most relevant | Search more
arXiv:2308.04667 [math.AP] (Published 2023-08-09)
Stability of the Caffarelli-Kohn-Nirenberg inequality: the existence of minimizers
arXiv:1307.2226 [math.AP] (Published 2013-07-08)
Symmetry breaking of extremals for the Caffarelli-Kohn-Nirenberg inequalities in a non-Hilbertian setting
arXiv:1701.00901 [math.AP] (Published 2017-01-04)
Norm Constants in cases of the Caffarelli-Kohn-Nirenberg inequality