arXiv Analytics

Sign in

arXiv:2106.06732 [math-ph]AbstractReferencesReviewsResources

Dressed energy of the XXZ chain in the complex plane

Saskia Faulmann, Frank Göhmann, Karol K. Kozlowski

Published 2021-06-12Version 1

We consider the dressed energy $\varepsilon$ of the XXZ chain in the massless antiferromagnetic parameter regime at $0 < \Delta < 1$ and at finite magnetic field. This function is defined as a solution of a Fredholm integral equation of the second kind. Conceived as a real function over the real numbers it describes the energy of particle-hole excitations over the ground state at fixed magnetic field. The extension of the dressed energy to the complex plane determines the solutions to the Bethe Ansatz equations for the eigenvalue problem of the quantum transfer matrix of the model in the low-temperature limit. At low temperatures the Bethe roots that parametrize the dominant eigenvalue of the quantum transfer matrix come close to the curve ${\rm Re}\, \varepsilon (\lambda) = 0$. We describe this curve and give lower bounds to the function ${\rm Re}\, \varepsilon$ in regions of the complex plane, where it is positive.

Related articles: Most relevant | Search more
arXiv:1412.7511 [math-ph] (Published 2014-12-23)
Modified algebraic Bethe ansatz for XXZ chain on the segment - II - general cases
arXiv:1212.0195 [math-ph] (Published 2012-12-02, updated 2013-03-05)
Transmission amplitudes from Bethe ansatz equations
arXiv:math-ph/0407033 (Published 2004-07-16)
Bethe Ansatz Equations of XXZ Model and q-Sturm-Liouville Problems