arXiv Analytics

Sign in

arXiv:2106.05514 [math.RT]AbstractReferencesReviewsResources

Symmetric subcategories, tilting modules and derived recollements

Hongxing Chen, Changchang Xi

Published 2021-06-10Version 1

For any good tilting module $T$ over a ring $A$, there exists an $n$-symmetric subcategory $\mathscr{E}$ of a module category such that the derived category of the endomorphism ring of $T$ is a recollement of the derived categories of $\mathscr{E}$ and $A$ in the sense of Beilinson-Bernstein-Deligne. Thus the kernel of the total left-derived tensor functor induced by the tilting module is triangle equivalent to the derived category of $\mathscr{E}$.

Related articles: Most relevant | Search more
arXiv:1911.07667 [math.RT] (Published 2019-11-18)
From $τ$-tilting modules to tilting modules
arXiv:1706.00475 [math.RT] (Published 2017-06-01)
Dominant dimension and tilting modules
arXiv:1211.5622 [math.RT] (Published 2012-11-23, updated 2013-12-19)
τ-rigid modules for algebras with radical square zero