arXiv:2105.09238 [math.AT]AbstractReferencesReviewsResources
Equivariant cohomology and the super reciprocal plane of a hyperplane arrangement
Published 2021-05-19Version 1
In this paper, we investigate certain graded-commutative rings which are related to the reciprocal plane compactification of the coordinate ring of a complement of a hyperplane arrangement. We give a presentation of these rings by generators and defining relations. This presentation was used by Holler and I. Kriz to calculate the $\mathbb{Z}$-graded coefficients of localizations of ordinary $RO((\mathbb{Z}/p)^n)$-graded equivariant cohomology at a given set of representation spheres, and also more recently by the author in a generalization to the case of an arbitrary finite group. We also give an interpretation of these rings in terms of superschemes, which can be used to further illuminate their structure.