arXiv Analytics

Sign in

arXiv:2105.08262 [math.PR]AbstractReferencesReviewsResources

Itô--Föllmer Calculus in Banach Spaces II: Transformations of Quadratic Variations

Yuki Hirai

Published 2021-05-18, updated 2022-11-21Version 2

In this paper, we study properties of quadratic variations of c\`{a}dl\`{a}g paths within the framework of the It\^{o}--F\"{o}llmer calculus in Banach spaces. We prove a $C^1$-type transformation formula for quadratic variations. We also investigate relations between tensor and scalar quadratic variations.

Related articles: Most relevant | Search more
arXiv:2104.08138 [math.PR] (Published 2021-04-16)
It{ô}-F{ö}llmer Calculus in Banach Spaces I: The It{ô} Formula
arXiv:1304.7575 [math.PR] (Published 2013-04-29, updated 2014-05-27)
Stochastic integration in Banach spaces - a survey
arXiv:1009.2650 [math.PR] (Published 2010-09-14, updated 2014-04-08)
On a Class of Martingale Problems on Banach Spaces