arXiv:2105.06945 [math.AG]AbstractReferencesReviewsResources
The equivariant Hilbert series of the canonical ring of Fermat curves
Hara Charalambous, Kostas Karagiannis, Sotiris Karanikolopoulos, Aristides Kontogeorgis
Published 2021-05-14, updated 2021-09-01Version 2
We consider a Fermat curve $F_n:x^n+y^n+z^n=1$ over an algebraically closed field $k$ of characteristic $p\geq0$ and study the action of the automorphism group $G=\left(\mathbb{Z}/n\mathbb{Z}\times\mathbb{Z}/n\mathbb{Z}\right)\rtimes S_3$ on the canonical ring $R=\bigoplus H^0(F_n,\Omega_{F_n}^{\otimes m})$ when $p>3$, $p\nmid n$ and $n-1$ is not a power of $p$. In particular, we explicitly determine the classes $[H^0(F_n,\Omega_{F_n}^{\otimes m})]$ in the Grothendieck group $K_0(G,k)$ of finitely generated $k[G]$-modules, describe the respective equivariant Hilbert series $H_{R,G}(t)$ as a rational function, and use our results to write a program in Sage that computes $H_{R,G}(t)$ for an arbitrary Fermat curve.