arXiv Analytics

Sign in

arXiv:2105.06945 [math.AG]AbstractReferencesReviewsResources

The equivariant Hilbert series of the canonical ring of Fermat curves

Hara Charalambous, Kostas Karagiannis, Sotiris Karanikolopoulos, Aristides Kontogeorgis

Published 2021-05-14, updated 2021-09-01Version 2

We consider a Fermat curve $F_n:x^n+y^n+z^n=1$ over an algebraically closed field $k$ of characteristic $p\geq0$ and study the action of the automorphism group $G=\left(\mathbb{Z}/n\mathbb{Z}\times\mathbb{Z}/n\mathbb{Z}\right)\rtimes S_3$ on the canonical ring $R=\bigoplus H^0(F_n,\Omega_{F_n}^{\otimes m})$ when $p>3$, $p\nmid n$ and $n-1$ is not a power of $p$. In particular, we explicitly determine the classes $[H^0(F_n,\Omega_{F_n}^{\otimes m})]$ in the Grothendieck group $K_0(G,k)$ of finitely generated $k[G]$-modules, describe the respective equivariant Hilbert series $H_{R,G}(t)$ as a rational function, and use our results to write a program in Sage that computes $H_{R,G}(t)$ for an arbitrary Fermat curve.

Related articles: Most relevant | Search more
arXiv:math/0411059 [math.AG] (Published 2004-11-03)
Problems from the workshop on "Automorphisms of Curves" (Leiden, August, 2004)
I. Bouw et al.
arXiv:1709.05025 [math.AG] (Published 2017-09-15)
Automorphism group of plane curve computed by Galois points, II
arXiv:1006.4869 [math.AG] (Published 2010-06-24, updated 2010-10-18)
Automorphism Groups on Tropical Curves: Some Cohomology Calculations