arXiv Analytics

Sign in

arXiv:2105.05772 [math.AT]AbstractReferencesReviewsResources

Parametrised moduli spaces of surfaces as infinite loop spaces

Andrea Bianchi, Florian Kranhold, Jens Reinhold

Published 2021-05-12, updated 2022-05-22Version 2

We study the $E_2$-algebra $\Lambda\mathfrak{M}_{*,1}=\coprod_{g\geqslant 0}\Lambda\mathfrak{M}_{g,1}$ consisting of free loop spaces of moduli spaces of Riemann surfaces with one parametrised boundary component, and compute the homotopy type of the group completion $\Omega B\Lambda\mathfrak{M}_{*,1}$: it is the product of $\Omega^\infty\mathbf{MTSO}(2)$ with a certain free $\Omega^\infty$-space depending on the family of all boundary-irreducible mapping classes in all mapping class groups $\Gamma_{g,n}$ with $g\geqslant 0$ and $n\geqslant 1$.

Comments: 59 pages, 11 figures; accepted version (Forum of Mathematics, Sigma)
Categories: math.AT
Related articles: Most relevant | Search more
arXiv:2207.05941 [math.AT] (Published 2022-07-13)
Cartan calculi on the free loop spaces
arXiv:1606.00306 [math.AT] (Published 2016-06-01)
On classifying spaces for the family of virtually cyclic subgroups in mapping class groups
arXiv:math/0112169 [math.AT] (Published 2001-12-17)
Subalgebras of group cohomology defined by infinite loop spaces