arXiv Analytics

Sign in

arXiv:2104.13960 [math.RT]AbstractReferencesReviewsResources

Orthogonal polynomials and the deformed Jordan plane

André Beaudoin, Geoffroy Bergeron, Antoine Brillant, Julien Gaboriaud, Luc Vinet, Alexei Zhedanov

Published 2021-04-28Version 1

We consider the unital associative algebra $\mathcal{A}$ with two generators $\mathcal{X}$, $\mathcal{Z}$ obeying the defining relation $[\mathcal{Z},\mathcal{X}]=\mathcal{Z}^2+\Delta$. We construct irreducible tridiagonal representations of $\mathcal{A}$. Depending on the value of the parameter $\Delta$, these representations are associated to the Jacobi matrices of the para-Krawtchouk, continuous Hahn, Hahn or Jacobi polynomials.

Related articles: Most relevant | Search more
arXiv:1909.01510 [math.RT] (Published 2019-09-04)
Intertwining Operator for $Sp(4,\mathbb{R})$ and Orthogonal Polynomials
arXiv:1709.07226 [math.RT] (Published 2017-09-21)
Double affine Hecke algebra of rank 1 and orthogonal polynomials on the unit circle
arXiv:2402.02947 [math.RT] (Published 2024-02-05, updated 2024-12-21)
Superelliptic Affine Lie algebras and orthogonal polynomials