arXiv:2104.09219 [math.AP]AbstractReferencesReviewsResources
Optimal control of a population dynamics model with hysteresis
Published 2021-04-19Version 1
This paper addresses a nonlinear partial differential control system arising in population dynamics. The system consist of three diffusion equations describing the evolutions of three biological species: prey, predator, and food for the prey or vegetation. The equation for the food density incorporates a hysteresis operator of generalized stop type accounting for underlying hysteresis effects occurring in the dynamical process. We study the problem of minimization of a given integral cost functional over solutions of the above system. The set-valued mapping defining the control constraint is state-dependent and its values are nonconvex as is the cost integrand as a function of the control variable. Some relaxation-type results for the minimization problem are obtained and the existence of a nearly optimal solution is established.