arXiv Analytics

Sign in

arXiv:2104.08166 [cs.LG]AbstractReferencesReviewsResources

Overfitting in Bayesian Optimization: an empirical study and early-stopping solution

Anastasia Makarova, Huibin Shen, Valerio Perrone, Aaron Klein, Jean Baptiste Faddoul, Andreas Krause, Matthias Seeger, Cedric Archambeau

Published 2021-04-16Version 1

Bayesian Optimization (BO) is a successful methodology to tune the hyperparameters of machine learning algorithms. The user defines a metric of interest, such as the validation error, and BO finds the optimal hyperparameters that minimize it. However, the metric improvements on the validation set may not translate to the test set, especially on small datasets. In other words, BO can overfit. While cross-validation mitigates this, it comes with high computational cost. In this paper, we carry out the first systematic investigation of overfitting in BO and demonstrate that this is a serious yet often overlooked concern in practice. We propose the first problem-adaptive and interpretable criterion to early stop BO, reducing overfitting while mitigating the cost of cross-validation. Experimental results on real-world hyperparameter optimization tasks show that our approach can substantially reduce compute time with little to no loss of test accuracy,demonstrating a clear practical advantage over existing techniques.

Related articles: Most relevant | Search more
arXiv:1901.11515 [cs.LG] (Published 2019-01-31)
ProBO: a Framework for Using Probabilistic Programming in Bayesian Optimization
arXiv:2010.00979 [cs.LG] (Published 2020-10-02)
BOSS: Bayesian Optimization over String Spaces
arXiv:1908.06674 [cs.LG] (Published 2019-08-19)
Towards Assessing the Impact of Bayesian Optimization's Own Hyperparameters