arXiv Analytics

Sign in

arXiv:2104.04418 [math.NA]AbstractReferencesReviewsResources

Some Observations on A Posteriori Error Estimation for Maxwell Equations

Yuwen Li

Published 2021-04-09Version 1

We extend the framework of a posteriori error estimation by preconditioning in [Li, Y., Zikatanov, L.: arXiv:2010.06774 (2020)] and derive new a posteriori error estimates for Maxwell two-phase interface problems. The proposed error estimator provides two-sided bounds for the discretization error and is robust with respect to coefficient variation under mild assumptions. For Maxwell equations with constant coefficients, the performance of this estimator is numerically compared with the one analyzed in [Sch\"oberl, J.: Math.~Comp. \textbf{77}(262), 633-649 (2008)].

Related articles: Most relevant | Search more
arXiv:1906.10507 [math.NA] (Published 2019-06-25)
A hierarchical approach to the a posteriori error estimation of isogeometric Kirchhoff plates and Kirchhoff-Love shells
arXiv:1011.0368 [math.NA] (Published 2010-11-01, updated 2011-08-23)
Goal-oriented A Posteriori Error Estimation for Finite Volume Methods
arXiv:1907.12264 [math.NA] (Published 2019-07-29)
A posteriori error estimates for the Allen-Cahn problem