arXiv Analytics

Sign in

arXiv:2103.14478 [math.FA]AbstractReferencesReviewsResources

The Operator Norm on Weighted Discrete Semigroup Algebras $\ell^1(S, ω)$

H. V. Dedania, J. G. Patel

Published 2021-03-26Version 1

Let $\omega$ be a weight on a right cancellative semigroup $S$. Let $\|\cdot\|_{\omega}$ be the weighted norm on the weighted discrete semigroup algebra $\ell^1(S, \omega)$. In this paper, we prove that the weight $\omega$ satisfies F-property if and only if the operator norm $\| \cdot \|_{\omega op}$ of $\| \cdot \|_{\omega}$ is exactly equal to another weighted norm $\| \cdot \|_{\widetilde{\omega}_1}$ [Theorem 2.5 ($iii$)]. Though its proof is elementary, the result is unexpectedly surprising. In particular, $\| \cdot \|_{1 op}$ is same as $\| \cdot \|_1$ on $\ell^1(S)$. Moreover, various examples are discussed to understand the relating among $\| \cdot \|_{\omega op}$, $\| \cdot \|_{\omega}$, and $\ell^1(S, \omega)$.

Related articles: Most relevant | Search more
arXiv:1207.0975 [math.FA] (Published 2012-07-04, updated 2013-01-03)
Can you compute the operator norm?
arXiv:2402.13084 [math.FA] (Published 2024-02-20, updated 2024-08-09)
The Operator Norm of Paraproducts on Hardy Spaces
arXiv:1805.03129 [math.FA] (Published 2018-05-08)
Selberg-type integrals and the variance conjecture for the operator norm