arXiv:2103.14478 [math.FA]AbstractReferencesReviewsResources
The Operator Norm on Weighted Discrete Semigroup Algebras $\ell^1(S, ω)$
Published 2021-03-26Version 1
Let $\omega$ be a weight on a right cancellative semigroup $S$. Let $\|\cdot\|_{\omega}$ be the weighted norm on the weighted discrete semigroup algebra $\ell^1(S, \omega)$. In this paper, we prove that the weight $\omega$ satisfies F-property if and only if the operator norm $\| \cdot \|_{\omega op}$ of $\| \cdot \|_{\omega}$ is exactly equal to another weighted norm $\| \cdot \|_{\widetilde{\omega}_1}$ [Theorem 2.5 ($iii$)]. Though its proof is elementary, the result is unexpectedly surprising. In particular, $\| \cdot \|_{1 op}$ is same as $\| \cdot \|_1$ on $\ell^1(S)$. Moreover, various examples are discussed to understand the relating among $\| \cdot \|_{\omega op}$, $\| \cdot \|_{\omega}$, and $\ell^1(S, \omega)$.