arXiv Analytics

Sign in

arXiv:2102.10088 [math.FA]AbstractReferencesReviewsResources

The space $L_1(L_p)$ is primary for $1<p<\infty$

Richard Lechner, Pavlos Motakis, Paul F. X. Müller, Thomas Schlumprecht

Published 2021-02-19Version 1

The classical Banach space $L_1(L_p)$ consists of measurable scalar functions $f$ on the unit square for which $$\|f\| = \int_0^1\Big(\int_0^1 |f(x,y)|^p dy\Big)^{1/p}dx < \infty.$$ We show that $L_1(L_p)$ $(1 < p < \infty)$ is primary, meaning that, whenever $L_1(L_p) = E\oplus F$ then either $E$ or $F$ is isomorphic to $L_1(L_p)$. More generally we show that $L_1(X)$ is primary, for a large class of rearrangement invariant Banach function spaces.

Related articles: Most relevant | Search more
arXiv:1503.05718 [math.FA] (Published 2015-03-19)
Real interpolation with weighted rearrangement invariant Banach function spaces
arXiv:2403.14388 [math.FA] (Published 2024-03-21)
Quarklet Characterizations for bivariate Bessel-Potential Spaces on the Unit Square via Tensor Products
arXiv:2403.07096 [math.FA] (Published 2024-03-11)
Gagliardo-Nirenberg inequality via a new pointwise estimate