arXiv Analytics

Sign in

arXiv:2102.09064 [math.RT]AbstractReferencesReviewsResources

Simple weight modules with finite weight multiplicities over the Lie algebra of polynomial vector fields

Dimitar Grantcharov, Vera Serganova

Published 2021-02-17Version 1

Let ${\mathcal W}_n$ be the Lie algebra of polynomial vector fields. We classify simple weight ${\mathcal W}_n$-modules $M$ with finite weight multiplicities. We prove that every such nontrivial module $M$ is either a tensor module or the unique simple submodule in a tensor module associated with the de Rham complex on $\mathbb C^n$.

Related articles: Most relevant | Search more
arXiv:math/0409371 [math.RT] (Published 2004-09-20)
On the structure and characters of weight modules
arXiv:math/0205297 [math.RT] (Published 2002-05-28)
Equivariant Operators between some Modules of the Lie Algebra of Vector Fields
arXiv:1705.05900 [math.RT] (Published 2017-05-16)
Lie algebras of vector fields on smooth affine varieties