arXiv Analytics

Sign in

arXiv:2102.03317 [astro-ph.HE]AbstractReferencesReviewsResources

Numerical simulation of hot accretion flows (IV): effects of black hole spin and magnetic field strength on the wind and the comparison between wind and jet properties

Hai Yang, Feng Yuan, Ye-fei Yuan, Christopher J. White

Published 2021-02-05Version 1

This is the fourth paper of our series of works studying winds from hot accretion flows around black holes. In the first two papers, we have shown the existence of strong winds in hot accretion flows using hydrodynamical and magnetohydrodynamical (MHD) simulations. In the third paper, by using three dimensional general relativity MHD numerical simulation data of hot accretion flows and adopting a "virtual particle trajectory" data analysis approach, we have calculated the properties of wind, such as its mass flux and velocity. However, that paper focuses only on a non-spinning black hole and SANE (standard and normal accretion). In the present paper, we extend the third paper by including cases of a rapidly rotating black hole and MAD (magnetically arrested disk). We focus on investigating the effect of spin and magnetic field on the properties of wind and jet. It is found that a larger spin and stronger magnetic field usually enhance the wind and jet. The formulae describing the mass flux, poloidal velocity, and fluxes of momentum, kinetic energy, and total energy of wind and jet are presented. One interesting finding, among others, is that even in the case of very rapidly spinning black hole where the jet is supposed to be the strongest, the momentum flux of jet is smaller than that of wind, while the total energy flux of jet is larger than that of wind by at most a factor of 10. The implications of this result to the importance of wind relative to jet in active galactic nuclei feedback are discussed.

Comments: 20 pages,15 figures;submitted to ApJ
Categories: astro-ph.HE
Related articles: Most relevant | Search more
arXiv:2305.09737 [astro-ph.HE] (Published 2023-05-16)
Simple convective accretion flows (SCAFs): Explaining the $\approx-1$ density scaling of hot accretion flows around compact accretors
arXiv:1505.07608 [astro-ph.HE] (Published 2015-05-28)
Gamma-ray activity of Seyfert galaxies and constraints on hot accretion flows
arXiv:1003.0966 [astro-ph.HE] (Published 2010-03-04, updated 2010-06-23)
Simulations of Magnetized Disks Around Black Holes: Effects of Black Hole Spin, Disk Thickness, and Magnetic Field Geometry