arXiv Analytics

Sign in

arXiv:2102.01953 [math.FA]AbstractReferencesReviewsResources

Furtherance of Numerical radius inequalities of Hilbert space operators

Pintu Bhunia, Kallol Paul

Published 2021-02-03Version 1

If $A,B$ are bounded linear operators on a complex Hilbert space, then % $w(A) \leq \frac{1}{2}\left( \|A\|+\sqrt{r\left(|A||A^*|\right)}\right)$ and $w(AB \pm BA)\leq 2\sqrt{2}\|B\|\sqrt{ w^2(A)-\frac{c^2(\Re (A))+c^2(\Im (A))}{2} },$ \begin{eqnarray*} w(A) &\leq& \frac{1}{2}\left( \|A\|+\sqrt{r\left(|A||A^*|\right)}\right),\\ w(AB \pm BA)&\leq& 2\sqrt{2}\|B\|\sqrt{ w^2(A)-\frac{c^2(\Re (A))+c^2(\Im (A))}{2} }, \end{eqnarray*} where $w(.),\|.\|,c(.)$ and $r(.)$ are the numerical radius, the operator norm, the Crawford number and the spectral radius respectively, and $\Re (A)$, $\Im (A)$ are the real part, the imaginary part of $A$ respectively. The inequalities obtained here generalize and improve on the existing well known inequalities.

Related articles: Most relevant | Search more
arXiv:2010.12750 [math.FA] (Published 2020-10-24)
Refinements of norm and numerical radius inequalities
arXiv:1908.04499 [math.FA] (Published 2019-08-13)
Numerical radius inequalities for linear operators and operator matrices
arXiv:1908.11182 [math.FA] (Published 2019-08-29)
On inequalities for A-numerical radius of operators