arXiv:2101.06817 [math.GT]AbstractReferencesReviewsResources
Quantum traces for $\mathrm{SL}_n(\mathbb{C})$: the case $n=3$
Published 2021-01-18Version 1
We generalize Bonahon and Wong's $\mathrm{SL}_2(\mathbb{C})$-quantum trace map to the setting of $\mathrm{SL}_3(\mathbb{C})$. More precisely, for each non-zero complex number $q$, we associate to every isotopy class of framed oriented links $K$ in a thickened punctured surface $\mathfrak{S} \times (0, 1)$ a Laurent polynomial $\mathrm{Tr}_\lambda^q(K) = \mathrm{Tr}_\lambda^q(K)(X_i^q)$ in $q$-deformations $X_i^q$ of the Fock-Goncharov coordinates $X_i$ for a higher Teichm\"{u}ller space, depending on the choice of an ideal triangulation $\lambda$ of the surface $\mathfrak{S}$. Along the way, we propose a definition for a $\mathrm{SL}_n(\mathbb{C})$-version of this invariant.
Comments: 34 pages, 23 figures + 1 appendix; 48 pages in total
Related articles: Most relevant | Search more
arXiv:1511.06054 [math.GT] (Published 2015-11-19)
Quantum Teichmüller spaces and quantum trace map
arXiv:2103.04471 [math.GT] (Published 2021-03-07)
Points of quantum $\mathrm{SL}_n$ coming from quantum snakes
A Khovanov stable homotopy type