arXiv:2012.15361 [math.OC]AbstractReferencesReviewsResources
Frank-Wolfe Methods with an Unbounded Feasible Region and Applications to Structured Learning
Haoyue Wang, Haihao Lu, Rahul Mazumder
Published 2020-12-30Version 1
The Frank-Wolfe (FW) method is a popular algorithm for solving large-scale convex optimization problems appearing in structured statistical learning. However, the traditional Frank-Wolfe method can only be applied when the feasible region is bounded, which limits its applicability in practice. Motivated by two applications in statistical learning, the $\ell_1$ trend filtering problem and matrix optimization problems with generalized nuclear norm constraints, we study a family of convex optimization problems where the unbounded feasible region is the direct sum of an unbounded linear subspace and a bounded constraint set. We propose two new Frank-Wolfe methods: unbounded Frank-Wolfe method (uFW) and unbounded Away-Step Frank-Wolfe method (uAFW), for solving a family of convex optimization problems with this class of unbounded feasible regions. We show that under proper regularity conditions, the unbounded Frank-Wolfe method has a $O(1/k)$ sublinear convergence rate, and unbounded Away-Step Frank-Wolfe method has a linear convergence rate, matching the best-known results for the Frank-Wolfe method when the feasible region is bounded. Furthermore, computational experiments indicate that our proposed methods appear to outperform alternative solvers.