arXiv Analytics

Sign in

arXiv:2012.13439 [math.FA]AbstractReferencesReviewsResources

Szlenk index of $C(K)\widehat{\otimes}_πC(L)$

R. M. Causey, E. Galego, C. Samuel

Published 2020-12-24Version 1

We compute the Szlenk index of an arbitrary projective tensor product $C(K)\widehat{\otimes}_\pi C(L)$ of spaces $C(K), C(L)$ of continuous functions on scattered, compact, Hausdorff spaces. In particular, we show that it is simply equal to the maximum of the Szlenk indices of the spaces $C(K), C(L)$. We deduce several results regarding non-isomorphism of $C(K)\widehat{\otimes}_\pi C(L)$ and $C(M)$ or $C(M)\widehat{\otimes}_\pi C(N)$ for particular choices of $K,L,M,N$.

Related articles: Most relevant | Search more
arXiv:2305.08147 [math.FA] (Published 2023-05-14)
A short calculation of the Szlenk index of spaces of continuous functions
arXiv:2311.15205 [math.FA] (Published 2023-11-26)
Discrete stopping times in the lattice of continuous functions
arXiv:1507.01993 [math.FA] (Published 2015-07-07)
An alternate description of the Szlenk index with applications