arXiv Analytics

Sign in

arXiv:2012.02408 [cs.CV]AbstractReferencesReviewsResources

PeR-ViS: Person Retrieval in Video Surveillance using Semantic Description

Parshwa Shah, Arpit Garg, Vandit Gajjar

Published 2020-12-04Version 1

A person is usually characterized by descriptors like age, gender, height, cloth type, pattern, color, etc. Such descriptors are known as attributes and/or soft-biometrics. They link the semantic gap between a person's description and retrieval in video surveillance. Retrieving a specific person with the query of semantic description has an important application in video surveillance. Using computer vision to fully automate the person retrieval task has been gathering interest within the research community. However, the Current, trend mainly focuses on retrieving persons with image-based queries, which have major limitations for practical usage. Instead of using an image query, in this paper, we study the problem of person retrieval in video surveillance with a semantic description. To solve this problem, we develop a deep learning-based cascade filtering approach (PeR-ViS), which uses Mask R-CNN [14] (person detection and instance segmentation) and DenseNet-161 [16] (soft-biometric classification). On the standard person retrieval dataset of SoftBioSearch [6], we achieve 0.566 Average IoU and 0.792 %w $IoU > 0.4$, surpassing the current state-of-the-art by a large margin. We hope our simple, reproducible, and effective approach will help ease future research in the domain of person retrieval in video surveillance. The source code and pretrained weights available at https://parshwa1999.github.io/PeR-ViS/.

Comments: 10 pages, 6 figures, 3 tables; Human Activity Detection in multi-camera, Continuous, long-duration Video (HADCV'21)under the IEEE Winter Conf. on Applications of Computer Vision (WACV), Virtual Conference, January 5, 2021
Categories: cs.CV
Related articles: Most relevant | Search more
arXiv:1901.10364 [cs.CV] (Published 2019-01-29)
Anomaly Locality in Video Surveillance
arXiv:2211.07137 [cs.CV] (Published 2022-11-14)
DroneNet: Crowd Density Estimation using Self-ONNs for Drones
arXiv:1912.03877 [cs.CV] (Published 2019-12-09)
Bi-Semantic Reconstructing Generative Network for Zero-shot Learning