arXiv Analytics

Sign in

arXiv:2012.02116 [astro-ph.SR]AbstractReferencesReviewsResources

Monitoring the radio emission of Proxima Centauri

Miguel Pérez-Torres, José Francisco Gómez, José Luis Ortiz, Paolo Leto, Guillem Anglada, José Luis Gómez, Eloy Rodríguez, Corrado Trigilio, Antonio Alberdi, Guillem Anglada-Escudé, Mayra Osorio, Grazia Umana, Zaira Berdiñas, María José López-González, Nicolás Morales, Cristina Rodríguez-López, James Chibueze

Published 2020-12-03Version 1

We present results from the most comprehensive radio monitoring campaign towards the closest star to our Sun, Proxima Centauri. We report 1.1 to 3.1 GHz observations with the Australian Telescope Compact Array over 18 consecutive days in April 2017. We detect radio emission from Proxima Centauri for most of the observing sessions, which spanned $\sim$1.6 orbital periods of the planet Proxima b. The radio emission is stronger at the low-frequency band, centered around 1.6 GHz, and is consistent with the expected electron-cyclotron frequency for the known star's magnetic field intensity of about 600 Gauss. The 1.6 GHz light curve shows an emission pattern that is consistent with the orbital period of the planet Proxima b around the star Proxima, with its maxima of emission happening near the quadratures. We also observed two short-duration (a few minutes) flares and a long-duration (about three days) burst whose peaks happened close to the quadratures. We find that the frequency, large degree of circular polarization, change of the sign of circular polarization, and intensity of the observed radio emission are all consistent with expectations from electron cyclotron-maser emission arising from sub-Alfv\'enic star-planet interaction. We interpret our radio observations as signatures of interaction between the planet Proxima b and its host star Proxima. We advocate for monitoring other dwarf stars with planets to eventually reveal periodic radio emission due to star-planet interaction, thus opening a new avenue for exoplanet hunting and the study of a new field of exoplanet-star plasma interaction.

Comments: 14 pages, 11 figures. Accepted in A&A (main journal)
Categories: astro-ph.SR, astro-ph.EP
Related articles: Most relevant | Search more
arXiv:1905.00974 [astro-ph.SR] (Published 2019-05-02)
Precise Measures of Orbital Period, Before and After Nova Eruption for QZ Aurigae
arXiv:1810.00006 [astro-ph.SR] (Published 2018-09-28)
An Improved Orbital Period for GY Cancri Based on Two K2 Campaigns
arXiv:1303.1712 [astro-ph.SR] (Published 2013-03-07)
The hunt for old novae