arXiv Analytics

Sign in

arXiv:2012.01000 [math.NA]AbstractReferencesReviewsResources

A compact higher-order finite-difference scheme for the wave equation can be strongly non-dissipative on non-uniform meshes

Alexander Zlotnik, Raimondas Čiegis

Published 2020-12-02Version 1

We study necessary conditions for stability of a Numerov-type compact higher-order finite-difference scheme for the 1D homogeneous wave equation in the case of non-uniform spatial meshes. We first show that the uniform in time stability cannot be valid in any spatial norm provided that the complex eigenvalues appear in the associated mesh eigenvalue problem. Moreover, we prove that then the solution norm grows exponentially in time making the scheme strongly non-dissipative and therefore impractical. Numerical results confirm this conclusion. In addition, for some sequences of refining spatial meshes, an excessively strong condition between steps in time and space is necessary (even for the non-uniform in time stability) which is familiar for explicit schemes in the parabolic case.

Related articles: Most relevant | Search more
arXiv:2011.05386 [math.NA] (Published 2020-11-10)
Explicit Time Stepping for the Wave Equation using CutFEM with Discrete Extension
arXiv:2408.16511 [math.NA] (Published 2024-08-29)
On the stability of finite-volume schemes on non-uniform meshes
arXiv:1601.04812 [math.NA] (Published 2016-01-19)
Relaxing the CFL condition for the wave equation on adaptive meshes