arXiv:2011.10071 [math.PR]AbstractReferencesReviewsResources
Extinction probabilities in branching processes with countably many types: a general framework
Daniela Bertacchi, Peter Braunsteins, Sophie Hautphenne, Fabio Zucca
Published 2020-11-19Version 1
We consider Galton-Watson branching processes with countable typeset $\mathcal{X}$. We study the vectors ${\bf q}(A)=(q_x(A))_{x\in\mathcal{X}}$ recording the conditional probabilities of extinction in subsets of types $A\subseteq \mathcal{X}$, given that the type of the initial individual is $x$. We first investigate the location of the vectors ${\bf q}(A)$ in the set of fixed points of the progeny generating vector and prove that $q_x(\{x\})$ is larger than or equal to the $x$th entry of any fixed point, whenever it is different from 1. Next, we present equivalent conditions for $q_x(A)< q_x (B)$ for any initial type $x$ and $A,B\subseteq \mathcal{X}$. Finally, we develop a general framework to characterise all \emph{distinct} extinction probability vectors, and thereby to determine whether there are finitely many, countably many, or uncountably many distinct vectors. We illustrate our results with examples, and conclude with open questions.