arXiv:2011.09005 [quant-ph]AbstractReferencesReviewsResources
Shielded, local Aharonov-Bohm effects: how quantum phases cannot be stopped
Pablo L. Saldanha, Chiara Marletto, Vlatko Vedral
Published 2020-11-17Version 1
Both classical and quantum wave interference phenomena rely on the notion of phase. In both classical as well as quantum electrodynamics the phases are acquired locally; however, the quantum phases have the additional property that they can be transmitted even when the classical value of the degree of freedom relevant for the transfer (such as the value of the electric field at one point) are zero. Here we use a covariant formalism that is capable of explaining the electric and magnetic versions of the Aharonov-Bohm effect, as well as the Aharonov-Casher effect, through local interactions of charges and currents with the quantum electromagnetic field. We show that Aharonov-Bohm effect, which is just another instance of interference based on a quantum phase, is present even if the solenoid generating the magnetic field is shielded by a superconductor. This is because even though the classical value of the magnetic field is zero in the superconductor (the Meissner effect), the quantum operators pertaining to the magnetic field are non-zero and are furthermore responsible for transmitting the phase information between the solenoid and the electron. The conclusion of our work is that quantum phases cannot be shielded and we believe that this, among other consequences, finally resolves the last outstanding mystery in the Aharonov-Bohm effect.