arXiv Analytics

Sign in

arXiv:2011.06574 [math.AP]AbstractReferencesReviewsResources

Generalized Carleson perturbations of elliptic operators and applications

Joseph Feneuil, Bruno Poggi

Published 2020-11-12Version 1

We extend in two directions the notion of perturbations of Carleson type for the Dirichlet problem associated to an elliptic real second-order divergence-form (possibly degenerate, not necessarily symmetric) elliptic operator. First, in addition to the classical perturbations of Carleson type, that we call additive Carleson perturbations, we introduce scalar-multiplicative and antisymmetric Carleson perturbations, which both allow non-trivial differences at the boundary. Second, we consider domains which admit an elliptic PDE in a broad sense: we count as examples the 1-sided NTA (a.k.a. uniform) domains satisfying the capacity density condition, the 1-sided chord-arc domains, the domains with low-dimensional Ahlfors-David regular boundaries, and certain domains with mixed-dimensional boundaries; thus our methods provide a unified perspective on the Carleson perturbation theory of elliptic operators. Our proofs do not introduce sawtooth domains or the extrapolation method. We also present several applications to some Dahlberg-Kenig-Pipher operators, free-boundary problems, and we provide a new characterization of $A_{\infty}$ among elliptic measures.

Related articles: Most relevant | Search more
arXiv:1207.6375 [math.AP] (Published 2012-07-26, updated 2012-07-30)
Vector analysis on fractals and applications
arXiv:math/0608312 [math.AP] (Published 2006-08-13)
Analyzability in the context of PDEs and applications
arXiv:math/0101119 [math.AP] (Published 2001-01-13)
On an estimate for the wave equation and applications to nonlinear problems