arXiv Analytics

Sign in

arXiv:2010.11759 [math.CA]AbstractReferencesReviewsResources

Asymptotic evaluation of $\int_0^\infty\left(\frac{\sin x}{x}\right)^n\;dx$

Jan-Christoph Schlage-Puchta

Published 2020-10-22Version 1

We consider the integral $\int_0^\infty\left(\frac{\sin x}{x}\right)^n\;dx$ as a function of the positive integer $n$. We show that there exists an asymptotic series in $\frac{1}{n}$ and compute the first terms of this series together with an explicit error bound.

Journal: Commun. Korean Math. Soc. 35 (2020), 1193-1202
Categories: math.CA
Subjects: 26D15, 33F05
Related articles: Most relevant | Search more
arXiv:math/9909162 [math.CA] (Published 1999-09-28)
Asymptotic Series for Some PainlevÉ VI Solutions
arXiv:2307.14639 [math.CA] (Published 2023-07-27)
Explicit error bound of the elliptic asymptotics for the first Painlevé transcendents
arXiv:1502.03382 [math.CA] (Published 2015-02-11)
Asymptotic evaluation of an integral arising in quantum harmonic oscillator tunnelling probabilities