arXiv Analytics

Sign in

arXiv:2010.09805 [math.NT]AbstractReferencesReviewsResources

Number of points of certain Artin-Schreier curves

Jędrzej Garnek

Published 2020-10-19Version 1

We prove a conjecture of Johansen, Helleseth and Kholosha concerning equality of exponential sums related to the cross-correlation of $m$-sequences. In the proof we show that certain Artin-Schreier curves have the same number of points over finite fields. This has a consequence regarding the L-polynomials of these curves.

Related articles: Most relevant | Search more
arXiv:0812.3382 [math.NT] (Published 2008-12-17)
p-Density, exponential sums and Artin-Schreier curves
arXiv:2401.08843 [math.NT] (Published 2024-01-16)
On invariants of Artin-Schreier curves
arXiv:1401.4373 [math.NT] (Published 2014-01-17, updated 2015-12-02)
Exact Divisibility of Exponential Sums Associated to Binomials over finite fields