arXiv Analytics

Sign in

arXiv:2010.08647 [math.FA]AbstractReferencesReviewsResources

The fixed point property for $(c)$-mappings and unbounded sets

Abdelkader Dehici, Sami Atailia

Published 2020-10-16Version 1

We prove that a closed convex subset $C$ of a real Hilbert space $X$ has the fixed point property for $(c)$-mappings if and only if $C$ is bounded. Some convergence results about the iterations are obtained.

Related articles: Most relevant | Search more
arXiv:math/0404235 [math.FA] (Published 2004-04-12)
The fixed point property for a class of nonexpansive maps in L\sp\infty(Ω,Σ,μ)
arXiv:1604.07587 [math.FA] (Published 2016-04-26)
Weak$^*$ Fixed Point Property and Polyhedrality in Lindenstrauss Spaces
arXiv:1611.02133 [math.FA] (Published 2016-11-07)
Stability constants of the weak$^*$ fixed point property for the space $\ell_1$