arXiv Analytics

Sign in

arXiv:2010.07099 [math.RT]AbstractReferencesReviewsResources

Classifying tilting modules over the Auslander algebras of radical square zero Nakayama algebras

Xiaojin Zhang

Published 2020-10-14Version 1

Let $\Lambda$ be a radical square zero Nakayama algebra with $n$ simple modules and let $\Gamma$ be the Auslander algebra of $\Lambda$. Then every indecomposable direct summand of a tilting $\Gamma$-module is either simple or projective. Moreover, if $\Lambda$ is self-injective, then the number of tilting $\Gamma$-modules is $2^n$; otherwise, the number of tilting $\Gamma$-modules is $2^{n-1}$.

Comments: 6 pages,to appear in Journal of Algebra and Its Applications
Categories: math.RT, math.RA
Subjects: 16G10, 16E10
Related articles: Most relevant | Search more
arXiv:1602.05037 [math.RT] (Published 2016-02-16)
Classifying $τ$-tilting modules over the Auslander algebra of $K[x]/(x^n)$
arXiv:2205.12409 [math.RT] (Published 2022-05-24)
On the number of tilting modules over a class of Auslander algebras
arXiv:2112.09590 [math.RT] (Published 2021-12-17, updated 2024-08-27)
Simple transitive 2-representations of bimodules over radical square zero Nakayama algebras via localization