arXiv Analytics

Sign in

arXiv:2010.06852 [math.RT]AbstractReferencesReviewsResources

Some homological properties of category $\mathcal O$ for Lie superalgebras

Chih-Whi Chen, Volodymyr Mazorchuk

Published 2020-10-14Version 1

For classical Lie superalgebras of type I, we provide necessary and sufficient conditions for a Verma supermodule $\Delta(\lambda)$ to be such that every non-zero homomorphism from another Verma supermodule to $\Delta(\lambda)$ is injective. This is applied to describe the socle of the cokernel of an inclusion of Verma supermodules over the periplectic Lie superalgebras $\mathfrak{pe}(n)$ and, furthermore, to reduce the problem of description of $\mathrm{Ext}^1_{\mathcal O}(L(\mu),\Delta(\lambda))$ for $\mathfrak{pe}(n)$ to the similar problem for the Lie algebra $\mathfrak{gl}(n)$. Additionally, we study the projective and injective dimensions of structural supermodules in parabolic category $\mathcal O^{\mathfrak p}$ for classical Lie superalgebras. In particular, we completely determine these dimensions for structural supermodules over the periplectic Lie superalgebra $\mathfrak{pe}(n)$ and the ortho-symplectic Lie superalgebra $\mathfrak{osp}(2|2n)$.

Related articles: Most relevant | Search more
arXiv:2101.08107 [math.RT] (Published 2021-01-20)
Whittaker modules for classical Lie superalgebras
arXiv:2312.08390 [math.RT] (Published 2023-12-12)
Khovanov algebras for the periplectic Lie superalgebras
arXiv:1401.3231 [math.RT] (Published 2014-01-14, updated 2014-07-29)
Primitive ideals, twisting functors and star actions for classical Lie superalgebras